What does the AJCP Mean to YOU!!

The Australian Joint Copying Project is a joint public archives venture, ‘a partnership between the National Library of Australia, the State Library of New South Wales and The National Archives of the United Kingdom’.

It began in 1948, identifying, describing, and copying records relating to Australia, New Zealand and the Pacific, held in hundreds of institutions, organisations, and homes throughout the United Kingdom.

Over the next 49 years the Project filmed 8 million records (10,419 microfilm reels), dating from 1560 to 1984.

However, even with the help and guidance of the Project’s 11 paper handbooks, 500 individual finding aids, and 10,000 pages of description, up to now I’ve felt too daunted by the size and scope of the AJCP record collection to make any real use of it.

But from 2017 there has been a project to digitise the microfilm images and text and provide online access to the Project’s content.

Yesterday afternoon I listened to a short webinar presented by the National Library of Australia (NLA) introducing the Project and explaining how to search its records through the NLA’s AJCP portal.

I immediately applied my new knowledge.

There are several ways to get to the Project. I used the path from the Library’s home page, at http://nla.gov.au, choosing the menu “using the library” (a very Covid-safe way to visit the NLA).

On the AJCP screen I typed my maiden name, ‘Crespigny’, into the search bar. ‘Crespigny’ is a more uncommon surname than my married name ‘Young’; I hoped it would produce a manageable set of records to look at.

I was taken to Trove, the NLA’s main search portal, with an already populated search. There were no results in the first categories. I needed to scroll down to get to the category “Diaries, Letters & Archives” to see the result I expected.

There were five items with the keyword “Crespigny”.

Two items were correspondence between my great grandfather Trent de Crespigny and Howard Florey, one of his students. (Florey shared a Nobel Prize in 1945 for his contribution to the development of penicillin.)

The fourth item was from CC de Crespigny, a Royal Navy Lieutenant, writing from Singapore in 1948. He had served in Borneo. This man was almost certainly my third cousin four times removed, Claude Augustus Champion de Crespigny (1829-1884). In 2017 I wrote about him, at B is for Borneo. The fifth item was a series of letters, also by Claude, written in 1858.

The first item, of eleven pages, was “Correspondence of W. Plunkett, C. Crespigny and C. Calvert (Christchurch), 1859 to 1860, (File 85947-50), (from Collections held by the Hertfordshire Record Office / Leake Family Papers (Acc. 599)) Unpublished – 1859-1860”.

To view this item I clicked on the item description. The text in blue is a hyperlink.

On the next screen is an image of one of the pages.  I needed to choose “get”

and then choose to “View at Australian Joint Copying Project”

I can then either choose to view the collection (green arrow) or choose to view the finding aid (orange arrow).

I first look at the collection and discover there are 11 items. The screen shows thumbnails of the images.

I next looked at the finding aid. The correspondence I am interested in is briefly described as “Concerning emigration of W. Plunkett to New Zealand on the Clontarf and his death on the voyage.” I can also see that it is part of the Leake Family Papers 1823 – 1922 (Fonds Acc. 599) held by the Hertfordshire Record Office. (“Fonds” is an archivists term for a “group of documents that share the same origin and that have occurred naturally as an outgrowth of the daily workings of an agency, individual, or organisation.”)

I have William Plunkett (1836 – 1860) on my family tree and I had recorded that he died on the way to New Zealand aged 23. He is the brother-in-law of my 4th great-uncle: his sister Frances Plunkett (1835 – 1908) married Charles John Champion Crespigny (1815 – 1880). Charles was the brother of my 3rd great grandfather Philip Champion Crespigny. Isabel Plunkett (1835 – 1924) was a sister of William and Frances and she married Stephen Leake (1826 – 1893), hence the connection to the Leake family papers.

The relevant letter was 9th of the 11 items.

It was from Arthur Willis, Gann & Co., New Zealand Line of Packet Office, London, dated 29 June 1860 to C. Crespigny, my fourth great uncle and William Plunkett’s brother-in-law. It advised that William Plunkett, passenger by the “Clontarf”, died of phrenitis [brain inflammation] on 23 January 1860.

I am no longer daunted by the vast size of the Australian Joint Copying Project, and I look forward to exploring it for what I might discover there about my family history.


The webinar I watched was recorded and has been uploaded to YouTube by the National Library of Australia: https://youtu.be/94yeJpoVXc0

National Library of Australia Australian Joint Copying Project link: https://www.nla.gov.au/content/australian-joint-copying-project

Related Posts

DNA: Using the What Are the Odds Tool version 2

Recently I used the ‘DNAPainter‘ What Are the Odds Tool to place a DNA match in my tree and to identify her father.

M showed up in Greg’s list of matches at Ancestry.com. She and he shared 29 centimorgans of DNA across 2 segments, but she had no tree associated with her DNA. Her kit was administered by a 3rd person, D.

M and Greg’s shared matches were all cousins I knew, all of them associated with the Young branch of his tree.  M also shared DNA with Greg’s Aunt Betty: 48 centimorgans across 4 segments. M and Aunt Betty had 14 shared matches. More than ten were known cousins all linked to the Young family tree.

I messaged D and she replied that M was born in outback Queensland and that M’s father was unknown. I knew of no relatives who came from there.

48 centimorgans of shared DNA is associated with a range of possible cousin relationships. It was not at all clear how M and Aunt Betty (and Greg) might be related.

I asked D to share a screenshot of M’s shared matches with Aunt Betty. I thought that if I knew how much DNA M shared with some of our known cousins I might be able to identify how M might be related.

One of the shared matches, that of J, jumped out.  J is Greg’s 3rd cousin and is descended from one of the daughters of George Young and Caroline Young born Clarke. M and J share 815 centimorgans and so can be estimated to be 1st or 2nd cousins. Other known cousins also shared significant amounts of DNA with M, including F who shared 277 centimorgans and R who shared 443 centimorgans. Based on the amount of shared DNA F and R are estimated to be 2nd cousins to M.

I drew up a tree in the DNAPainter What Are The Odds tool, placing Betty and Greg and also J, F, R (and as well, K and B. I know how these are related.) K shares 60 centimorgans with M and B shares 55 centimorgans with M. Using the What Are The Odds tool you add how much DNA is shared between the match and the target name. The aim is to place the target on the tree.

The numbers below each name or initial are the number of centimorgans of DNA that person shares with M.

I then switched to version 2

see orange arrow for where to click to switch to version 2
green arrow shows where to click for suggest hypotheses in version 2 of the tool

and then clicked on ‘suggest hypotheses’. The tool suggested 10.

This is the tree showing the 10 hypotheses.
Scrolling down below the tree there is a table showing a matrix of the matches of M with how M hypothetically relates to those matches.

Rachel lived from 1865 to 1918. M cannot be her child, so hypotheses 8 and 10 shown by the blue and green arrows are implausible. It is possible that M could be a grandchild of Rachel, but hypotheses 6 and 7, shown by the orange arrows, have much lower scores than other hypotheses, and so I removed them too. When removing hypothesis 8 though I did not delete that person on the tree but I removed the option that it was a hypothesis.

I am left with six hypotheses.

If I scroll down I get a ranking of hypotheses.

Scrolling further I get the table with a matrix showing the odds associated with each hypothesis and the various matches.

It can be seen that hypothesis 2 (highlighted in orange) is the most likely. J is most likely a first cousin of M, our target who we are trying to place on the tree. The next most likely hypothesis is that M is a half-aunt of J.

I know from my knowledge of the family tree that J does have a full uncle, brother of J’s parent M and showing as unknown sibling child of Leslie on the tree. Thus hypothesis 2 is possible from a genealogical perspective.

I checked the electoral rolls for the period that M was born and for the location. I found that the unknown sibling was indeed living in that part of Queensland at the relevant time. M’s mother had suggested the surname of M’s father. It was similar to the surname of J’s uncle.

On the basis of the calculations of What Are The Odds tool and a review of the broader circumstances, I am reasonably confident that hypothesis 2 is plausible.  M is the 1st cousin of J. She is Greg’s 3rd cousin.

DNA Technique: Deductive Chromosome Mapping

This afternoon I watched a Legacy Family Tree webinar (recorded) by Dr Blaine Bettinger, a genetic genealogist, about a DNA technique used to map the segments of DNA that a person does not share with a match. A match, of course, is definable as a string or strings of DNA common to two people. But what about the DNA that they do not share? Can it tell us anything?

Blaine Bettinger showed how, by using DNA information from close relatives such as parents or siblings, we can work out where pieces of DNA came from: how they were inherited. The technique is called deductive mapping, inverse mapping, or inferred mapping.

The key is to recognise that on the chromosome you inherited from your father, your DNA comes either from your paternal grandfather or your paternal grandmother. Similarly, the DNA from your mother comes either from your maternal grandfather or your maternal grandmother.

If you find DNA on the chromosome that you inherited from your father that did not come from your paternal grandfather then it must have come from your paternal grandmother. The principle applies equally to matches on your mother’s side.

I was very keen to put this new technique to the test on my husband Greg’s DNA. Luckily, Greg’s brother Dennis had tested his DNA, and I was able to use his matches in combination with Greg’s. The first match I reviewed was Greg and Dennis’s paternal aunt Betty.

Note Aunt Betty and Peter, father of Greg and Dennis, are half siblings. Betty and Peter have the same father but different mothers.

My hypothesis was that for segments of DNA where Dennis shares DNA with Aunt Betty and Greg does not share DNA with Aunt Betty, those segments must have been inherited from Greg and Dennis’s paternal grandmother, Peter’s mother Elizabeth Cross.

All segments on Greg and Dennis’s paternal chromosomes were either inherited from their paternal grandfather Cecil Young or from their paternal grandmother Elizabeth Cross. If Dennis shared a segment with his Aunt Betty, he inherited that segment from Cecil. If Greg did not share that same segment with his Aunt Betty, then he did not inherit that segment from Cecil. He must have inherited the segment from his paternal grandmother Elizabeth Cross.

Using the tools at MyHeritage DNA I was easily able to extract the segment data of the DNA shared by Greg and his Aunt Betty. They share 138.5 centimorgans of DNA across 19 segments. I scrolled down to the chromosome browser on the match screen and clicked on “Advanced Options” on the right side of the screen and then clicked on “Download shared DNA info”.

This gave me a spreadsheet and I was able to copy and paste the data into DNA Painter (I have written about chromosome mapping with DNA Painter at DNA Painter – a new tool). I created a new profile for this exercise as I did the calculations.

Map of the DNA segments Greg shares with his Aunt Betty using DNAPainter

I then extracted the segment data for Dennis and Betty.

I then mapped Dennis and Betty’s match at DNA Painter. So I could see Greg and Betty’s match lined up against Dennis and Betty’s, I mapped it as a maternal match. I then looked for the visual clues of segment mismatch. I have highlighted these segment mismatches with green arrows. There were eight segments where Dennis shared DNA with Aunt Betty that Greg did not. (There were also segments that Greg shared and Dennis did not but for the moment we are concentrating on Greg’s chromosome mapping.) Four of these were complete segments and four partial segments.

I took the spreadsheet of Greg and Betty’s shared segments and pasted beside it Dennis and Betty’s shared segments so I could compare them.

Data from MyHeritage

I then highlighted the whole segment mismatches in green and the partial segment matches in purple.

I then added the four segments that were inferred to have been inherited by Greg from Elizabeth to the DNA Painter profile. I only needed to add the chromosome number and the start location and end location.

For the purposes of chromosome mapping I did not need the additional data concerning RSID start and end, the number of centimorgans, or SNPs.

When previewing the segments I got a warning from DNA Painter about match segments being overlaid and that I might have already mapped these segments.

When I tried to save the match, DNA Painter told me that there was an overlap with the segments I had already painted of Dennis’s match with Aunt Betty.

The four new segments showing DNA inferred to be inherited from Elizabeth Cross are in shown in green

The next challenge was to calculate the partial segments where Dennis shared some DNA with Aunt Betty that Greg did not at the beginning or end of a segment. I first did the calculation for Chromosome 5. The segment Dennis shared with Aunt Betty extended beyond the segment Greg shared with Aunt Betty. In the spreadsheet calculations for inferring the DNA Greg inherited from Elizabeth Cross, I copied the end location data for Greg’s segment match with Aunt Betty and the end location data for Dennis’s segment match with Aunt Betty. This created the segment that Dennis shared with Aunt Betty and Greg did not.

I painted that segment successfully. The black arrow highlights the segment Greg does not share with Betty and can thus be inferred to have been inherited from Elizabeth Cross. Underneath can be seen that Dennis shares that segment with Betty.

I repeated the exercise for chromosome 11. This time Dennis shares DNA with Betty and Greg does not before the segment Greg shares with Betty. So the calculation involved the start location of Dennis being the start location of the inferred segment and the start location of Greg’s match with Betty being the end location of the inferred segment.

I repeated the exercise of inferring segments for the remaining two segments.

The finished profile showing Greg’s match with Aunt Betty in purple, Dennis’s match with Aunt Betty in orange and in green the inferred inheritance of DNA by Greg from his paternal grandmother Elizabeth Cross based on the mismatch of Greg’s match with Aunt Betty when compared to the shared DNA of Dennis and Aunt Betty

I was confident in the logic of the results of this deductive chromosome mapping exercise and added the inferred segments to Greg’s DNA chromosome map. Before this exercise I had mapped 40% of Greg’s DNA with 161 segments being assigned. After adding these 8 segments 41% with 169 segments assigned. I have now mapped 54% of Greg’s paternal chromosome with 94 segments assigned.

I look forward to continuing the exercise and filling in more gaps.

By assigning inferred segments to either the paternal grandfather, paternal grandmother or on the maternal chromosome to either the maternal grandfather or maternal grandmother, I may be able to use the information to deduce how a DNA match links to Greg’s family tree based on the segment shared, even if that match does not have a family tree link to Greg.

A chromosome map is not just a colourful diagram. It’s a useful tool for exploring how DNA matches might be related. Information about the descent of a DNA segment, even if the segment is not directly shared by matches, could help you to calculate their shared ancestry.

Related posts

Cavan calling

Last Wednesday I received an email from an organisation called ‘Ireland Reaching Out’ about ‘Cavan Day, when proud Cavan people and their Diaspora all over the world will be celebrating their heritage and culture’.

‘Ireland Reaching Out’ hopes to link descendants of the Irish Diaspora—Irish immigrants, in other words—with their home parishes in Ireland. It provides tools and resources for exploring Irish family history.

“The first-ever Cavan Day, where people and the diaspora of Co Cavan in Ireland come together to celebrate their pride, will be hosted virtually on Saturday, September 26.

Organizers said that Cavan Day is taking the place of the much-anticipated “Cavan Calling” homecoming festival that has been postponed until 2021 thanks to coronavirus.

The inaugural Cavan Day, organizers say, will allow Cavan people around the globe to show their colours and their pride in their home county, by taking to social media and celebrating Cavan using the #CavanDay hashtag.”

County Cavan, in the Province of Ulster, borders on the Northern Ireland province of Fermanagh. It is about an hour’s drive from Dublin.  Cavan, said to have 365 lakes, is known as ‘The Lakeland County’. Many rivers rise there, most notably the Shannon.

Northern end of Castle Lough in the Bailieborough Demesne. Photographed 2017, image retrieved from geograph.org.
County Cavan highlighted in darker green shown to the north of the Republic of Ireland shown in green and just south of Northern Ireland shown in pink. Retrieved from Wikipedia CC 3.0.

Parts of Cavan were hard hit by the Great Famine of 1845 to 1849. In 1841 the population was 243,000. This fell by over 28% to 174,000 in 1851 then declined again to 154,000 in 1861. The population continued to decline until 1971, when it stood at 53,000. At present County Cavan has 76,000 people, with the largest towns Cavan (10,900) and Bailieborough (2,700).

Margaret Smyth (1834 – 1897), great great grandmother of my husband Greg, emigrated on the ‘Persian‘ to Australia from Ireland, arriving  in Melbourne, Victoria on 9 April 1854 with a baby born on the passage.

From the passenger list of the Persian, Margaret Smyth and infant are at the bottom of the screenshot , record retrieved through ancestry.com

The passenger list records that Margaret Smyth was from Cavan. Her religion was Church of England; she could read and write; and she was 20 years old. She did not find a job immediately on landing, but went to stay with her cousin John ‘Hunter’ (or something like that; the surname is not completely legible).

I have not been able to find more about this cousin, nor have I have discovered anything more about Margaret’s baby. There seems to be no death certificate, but the baby may have died without its death registered, for in 1854 civil registration of deaths was not yet in force in Victoria.

On 19 November 1855 Margaret Smyth, dressmaker from Cavan, aged 22, married John Plowright, also 22, a gold digger. Their wedding was held at the residence of John Plowright, in Magpie (on the Ballarat diggings, five miles or so from where Greg and I live now). On the certificate Margaret’s parents are given as William Smyth, farmer, and Mary nee Cox.

On documents Margaret usually gave her birthplace as Cavan. On her death
certificate her birthplace was given by her adopted son Harold as Bailieborough, Cavan. On that document, however, Harold gave her parents
as Joseph, a farmer, and Ann Smyth. I am more inclined to believe the names of the parents given by Margaret at the time of her wedding are correct.

Main Street, Bailieborough, Co. Cavan in 2007 from geograph.org

I have found possible baptism records linking the names of William Smyth and a daughter Margaret but none that seem entirely reliable.

The ‘Ireland Valuation Books’ of 1838 (which I viewed through FindMyPast) have a William Smyth of Tanderagee Townland, Bailieborough Parish, Clankee Barony, County Cavan. This could be Margaret’s father.

More and more records are being digitised, so perhaps some useful documents will come to light. DNA connections also offer some tantalising clues but I have not yet found any definite Smyth cousins.

I hope we can visit Ireland one day. Cavan will certainly be part of the trip. Before we visit I hope I will have discovered more about Margaret Smyth’s family there.

Related post

Using MyHeritage’s Theory of Family Relativity™

The genealogy company MyHeritage recently announced it had refreshed the data for its ‘Theory of Family Relativity™’, a tool that computes hypothetical family relationships from historical records and DNA matches. It does this by ‘…incorporating genealogical information from [its] collections of nearly 10 billion historical records and family tree profiles, to offer theories on how you and your DNA Matches might be related.

In yesterday’s webinar I looked at a MyHeritage theory of the relationship between my husband Greg and his cousin Pearl. MyHeritage suggests that Pearl is Greg’s second cousin once removed. This is confirmed by the historical records. Greg and Pearl have well-developed and reliable family trees, so it wasn’t difficult to calculate the relationship.

It’s hard to say what’s new in MyHeritage’s new Theory. It’s possible that new ways of massaging the data have been developed, but it seems more likely that, with larger volumes of data being processed to develop Theories, ‘new’ simply means more, as in ‘newly-added’.

Anyway, I thought I’d give it a try.

MyHeritage’s announcement included a note advising users that ‘If we have found new theories for you in this update, you’ll see a banner about the Theory of Family Relativity™ at the top of your DNA Matches page. Click “View theories” to see all the theories we’ve found, both old and new.’

I couldn’t find this banner, but I eventually found my way to the filters on the DNA results page where by using the “All tree details” filter, I could select “Has Theory of Family Relativity™”

1 choose DNA from top menu bar – 4th option, 2 choose to look at DNA Matches, 3 select filters, 4 click on “All tree details and from the drop down menu select the top option “Has Theory of Family Relativity™” indicated by the green arrow

My husband Greg has 14 matches with theories. Back in March 2019 I counted 7 matches with theories so I looked at this list of matches again to see if I can learn anything new. In March 2019 Greg had 4313 DNA matches at MyHeritage. Now he has 6399, 50% more.

Several of the 14 matches in the list were matches I had not previously reviewed. I decided to look at S, whose DNA kit is managed by T from Canada.

2 of the 14 matches which have a Theory of Family Relativity: in the post I have looked at the second match in this list
closer view of screenshot of the 2nd match

Greg and S share 35 centimorgans across 1 segment. MyHeritage estimates them to be 3rd to 5th cousins. S appears in a family tree with 250 people. S is the 4th cousin of Greg according to the Theory of Family Relativity™. Ancestral surnames appearing in both trees include Dawe; Daw and Smith. Ancestral places common to Greg and S include Great Britain and Ireland.

I clicked on View Theory which I have highlighted with the green arrow.

There are three paths to support the theory that Greg and S are 4th cousins.

The first path uses 3 websites: my tree, a tree by B R from Australia and the third website the tree by T who administers the DNA kit for S. MyHeritage states “This path is based on 3 MyHeritage family trees, with 55% confidence”

The green arrow highlights that there are three paths to review, the first path is displayed. The letters a and b show the links between the trees and there is a confidence level that they have a match between the trees which is shown immediately above the letters a and b.

The link is William Smith Dawe (1810-1977), Greg’s third great grandfather. I have on my tree that he is married to Mary Way (1811 – 1861). B R’s tree has William’s dates (1819 – 1877) and has William’s wife as Elizabeth Hocken 1821 – 1884 and the daughter of William and Elizabeth as Thirza Dawe 1824 – 1891. Thirza is the great great grandmother of S.

MyHeritage thinks the probability that the two William Smith Dawe’s on my tree and B R’s tree is 100% despite the differing birth dates. MyHeritage thinks the probability that Thirza Daw on B R’s tree is the same Thirza Daw on T’s tree is only 55%. I clicked on the small 55% immediately above the green letter b and got the following pop-up.

I have highlighted the 55% confidence with a green arrow up the top. Both Thirza’s have the same birth and death dates and places. The significant difference between the two Thirza’s is their parents. In B R’s tree Thirza is the daughter of William Smith Dawe and Elizabeth Dawe born Hocken. In T’s tree Thirza is the daughter of Isaac Smith Dawe and Betsy Dawe born Metters or Matters

There are several problems with this first path of the theory calculated by MyHeritage. I don’t believe our William had two wives and Thirza born 1824 would have been born when William and Elizabeth were extremely young. I know this family does have common names and these are repeated across several generations. There are also several cousin marriages in this branch of the tree.

I looked at the second path to see if it is more plausible. MyHeritage states “This path is based on 4 MyHeritage family trees, with 70% confidence.”

The four trees are mine and the tree by T who administers the DNA kit for S plus a tree by JS from Australia and a tree by MT from Australia.

This path goes from Greg’s great grandmother Sarah Jane Way (1863 – 1898) to her mother Sarah Way née Daw (1837 – 1895). The Daw surname sometimes is spelt with an extra e as in the tree by J S. From Sarah Dawe on J S’s tree we go to Sarah Ellen Dawe (1837 – 1895) on the tree by M T. I am not sure where the middle name came from. I don’t recall it on any document. I will check the documents I have.

M T’s tree has the parents of Sarah Ellen Dawe as Betsey Metters 1792 – 1863 and Isaac Smith Dawe 1795 – 1851. From Isaac we link to T’s tree. He shows Isaac Smith Dawe 1797 – 1851 and Betsy Metters (Matters) 1792 – 1863 as the parents of Thirza Daw 1824 – 1891, the great grandmother of S.

This theory seems more plausible to me, but I need to verify this against source documents. At the links between the trees MyHeritage assigns a confidence level. Most of the links are 100% but MyHeritage is only 70% confident that Sarah Dawe in J S’s tree is the same person as Sarah Ellen Dawe in the tree by M T.

I clicked on the 70% and got the popup showing the comparison which gives additional detail from both trees. The difference is that the tree by J S has no parents has no parents but the tree by M T has Sarah Ellen Way’s parents as Isaac Smith Dawe and Betsy Metters. M T’s Sarah Ellen Daw has the same dates and places of birth and death as the Sarah Daw in my tree. I have plenty of documents to back up that sarah’s parents were not Isaac and Betsy but instead Isaac’s brother William Smith Daw.

This theory almost but not quite adds up. The need to go across several surnames is because of the spelling variations between Daw and Dawe. In my tree I have spelled the surname without a final ‘e’. I think MyHeritage has placed too much emphasis on the surname variation and not enough on other variations.

The third path “…is based on one community tree and 4 MyHeritage family trees, with 52% confidence”.

This path uses our tree, the tree by Greg’s cousin Pearl, a tree managed by S R from Great Britain, Family Search Family Tree, and the tree by T who administers the DNA kit for S.

Pearl’s tree provides the link between Sarah Daw on our tree spelt without an e to Sarah Dawe with an e and from there to her father William Dawe – surname with a final e. From there the link is to S R’s tree with William Smith Dawe (1810 – 1877), MyHeritage are only 72% confident they have the right man. William Dawe is not a direct forebear of Pearl and she has not provided many details for him in her tree.

S R shows Thirza Dawe (1824 – 1891) as the daughter of William Smith Dawe. From there the link is to FamilySearch Family Tree but with only 52% confidence. I clicked on the 53% to find out why MyHeritage is not confident they have the same person.

There are some important differences. The dates are the same and the place name variations are minor. FamilySearch, however, has Isaac Smith Dawe as the father of Thirza, not William Smith Dawe.

This path is rated 52% confidence by MyHeritage. The level of confidence is determined by its assessment of the weakest link.

I don’t think this path is correct. S R’s tree shows William Smith Dawe fathering Thirza when he was only 14, which is unlikely.

Of the three paths I think path 2 is most plausible but even then it is not quite right as it relies on the wrong father for Greg’s great great grandmother Sarah Way born Daw and does not fit with known records.

The next step is to review records and update my own tree using those records. After all, the Theory of Family Relativity generated by MyHeritage is meant to be a hint and not a proven conclusion.

I did not have Thirza Daw(e), the great great grandmother of S in my tree.

I have Isaac Smith Dawe (abt 1797 – 1851) and his wife Betsy Metters (1792 – 1863) in my tree. They show as Greg’s 4th great uncle. I have only one daughter showing for that marriage, the forebear of another match. Because Isaac is off to one side I have not researched all that family.

Isaac Daw appeared on the 1841 English census as a 40 year old miller living at Newton Mill, Tavistock, Devon. In the same household was Betsy Daw aged 45, and four children Betsy Daw aged 15, Honor aged 9, Jane aged 8, David aged 4.

On the 1851 census Isaac S Daw is a 54 year old miller employing 4 men and 1 boy living at Lumburn, Tavitock. In the same household are his wife Betsy aged 58, a niece aged 15 and a servant, a miller’s labourer, aged 30. All children have left home.

At the time of the 1841 census there may have been other children who had already left home.

Research by another cousin Lorna Henderson which she shared to Wikitree showed “entry in Beer Ferris in Tavistock parish register for 25 Aug 1818 shows Isaac Smith Dawe as sojourner of this parish, and Betsey Metters of this parish spinster, “married in this church by banns with the consent of their parents” by Harry Hobart, Rector. Both signed: Isaac Smith Daw and Betsey Matters. Wit: Humphrey Roberts, Mary Box (neither of whom witnessed other marriages on the page)”. I navigated to the Wikitree entry from MyHeritage when I searched Isaac Smith Dawe (Daw)/Dawe in All Collections. MyHeritage has 13,676,346 results for Isaac Smith Dawe (Daw)/Daw – far too many, the problem with a common name – they would of course be reduced as one narrowed down the search parameters.

I have been in correspondence with Lorna Henderson before and I know she is a most conscientious researcher and that Isaac is her direct forebear. She has a website for her family history at http://LornaHen.com and the details she has researched about Isaac Smith Daw are at http://familytree.lornahen.com/p28.htm . Lorna records there that in his will of 1847, William Smith Daw mentions his daughters: “My Daughters Names are as follows Mary Cook Betsey Bennett, Thirza Daw, Honor Daw and Jane Daw” and also his sons “my too sons Isaac Daw and David Daw”.

I could not find a baptism record for Thirza Daw in the MyHeritage record collections. On Wikitree cousin Lorna recorded that Thirza Daw was baptised 5 APR 1824 Tavistock, Devon, England. I found an image of her baptism in 1825 at FindMyPast. She was the daughter of Isaac Smith and Betsy Daw. Their abode was Newton Mill and Isaac’s occupation was Miller. I have updated Wikitree with the slightly revised date.

I am confident that Thirza is the daughter of Isaac Smith Daw, Greg’s 4th great uncle. Thyrza Daw shows up on the 1841 census as a female servant in another household. She married in 1850.

I traced down to S through English and Canadian censuses and other records. I found that she was Greg’s 5th cousin. S and Greg share 4th great grandparents Isaac Daw(e) 1769 – 1840 and Sarah Daw née Smith 1774 – 1833. Greg is descended from William Smith Daw 1810 – 1877 and S is descended from his brother Isaac Smith Daw 1797 – 1851.

I will update my family tree at MyHeritage. The Theory of Family Relativity won’t update straight away but at least I know that the next time it updates it may use the opportunity to trace a more accurate path.

As mentioned above I feel the algorithms MyHeritage used placed too much emphasis on the variation between Daw and Dawe and not enough emphasis on the parents named in the trees though there was obviously some weighting for variations in parents.

Nothing has changed about the MyHeritage theories particularly that I can see although I had not noticed previous theories that I reviewed making use of the tree at FamilySearch.

The Theories of Family Relativity generated by MyHeritage are just that, theories or hints. But they did point me in the right direction to make the connection between S and Greg and build my tree a little further.

Related posts

A webinar presentation

Last November I agreed to give a webinar (Web-seminar) – a live Internet presentation – for the genealogy company MyHeritage. Scheduled to be broadcast on Tuesday, September 22, 2020, it was to be called “Finding new cousins and building your family tree with DNA”.

The webinar was to start at 2 p.m. North American Eastern Time. I can’t remember if I realised that this would be 4 a.m. here in Ballarat.

What with bushfires and a pandemic I’d forgotten about this. Then last Friday I got an email scheduling an audio-visual test of the webinar software and hardware. It was on.

The walk-through went well, with only one hiccup: my Macintosh was reluctant to give microphone permissions to the webinar software. I gave up trying and used my Windows laptop instead.

My presentation was based on several posts, especially:

To comply with the convention that living people should not be identifiable, I asked the few people affected if they would mind being referred to by forename only. No one refused and I am very grateful. I also spent some time blurring their surnames where these were visible in screenshots and also blurring the details of other DNA matches.

My webinar was about using the MyHeritage DNA tools. Users interact with a web page for this. It’s complicated, and people new to it sometimes struggle to understand what’s going on. I tried to explain, emphasising that:

  • Find your matches where you know how you are related. MyHeritage has 4.2 million DNA kits in its database. You do not match all of these people but the number of matches you do have is probably overwhelming. Work from these known matches on to the matches you share with these matches.
  • Build or upload your family tree and link that tree with your DNA kit. If you are trying to work out how a match might be related you may need to work on their family tree to find the path to your shared most common recent ancestors and also to ensure there are no other possible relationships that could explain the shared inherited DNA.
  • There is a lot of data on the website and you have to explore often by scrolling down, and by clicking on the screen to reveal more even when there are not obvious prompts.
  • I pointed out the messaging icon and also the notes icon. Not everybody responds to your messages but many do. I recommend keeping the message short and offering to work with your match to find your shared ancestry.
  • I use the notes facility to keep track of when I messaged somebody and if I had received a reply plus any brief thoughts I might have about how they are related.
  • I looked at some of the tools MyHeritage offers: my favourite is the AutoClusters tool, an automatic tool that organizes your DNA Matches into clusters that likely descended from common ancestors. The tool was developed by Evert-Jan Blom and I have previously looked at the tool in my post DNA: experimenting with reports from GeneticAffairs.com.

All in all, it went well. The feedback was good. Most people found the session useful and in line with their expectations.

Next time I’ll use a headset for better quality audio and I’ll show simpler slides. And I will try to make sure the navigation tool for the presentation does not pop up.

And, er, um, um, I’ll try to say “Um” less.

The presentation was recorded. You can enjoy it, umms and all, through

The Lancastrian Vauxs

The Wars of the Roses

From time to time my children ask me about our ancestors. Have we got a pirate in our family tree? Did we have someone at Waterloo? Were we part of the Raj?

Recently my daughter Charlotte wondered if our family had supported the Lancastrians or the Yorkists in the Wars of the Roses. The short answer of course, is ‘Yes, very likely’. The war started in 1455 and continued for over thirty years, so given the usual pattern of branching genealogical descent it is probable that we had forebears on both sides.

The Vauxs

The English civil wars known as the Wars of the Roses, fought over whether the House of Lancaster or the House of York should control the English throne, began in 1455 and continued for 30 years.

 “Plucking the Red and White Roses in the Old Temple Gardens” by Henry Albert Payne (1868-1940) based upon a scene in Shakespeare’s Henry VI. Retrieved from Wikipedia.

My fifteenth great grandfather William Vaux (1435 – 1471) supported the Red Rose of Lancaster, but when the Yorkists won a series of battles in 1461 Vaux was convicted of treason and his lands were confiscated, including his principal manor at Harrowden in Northamptonshire. He was killed at the Battle of Tewkesbury on 4 May 1471. (Last year we visited Tewkesbury Abbey and looked at the nearby battlefield. Perhaps unsurprisingly, the name William Vaux seems to have gone unrecorded there.)

Tewkesbury Abbey

Vaux left a widow, Katherine, and at least two children: Nicholas (born about 1460, my 14th great grandfather) and Jane or Joan.

Katherine, a lady of the household of Queen Margaret, was with the Queen when she was taken prisoner by King Edward IV after the battle, and she stayed by the Queen during her imprisonment in the Tower of London. On the Queen’s release in 1476 Katherine went with her into exile.

Illumination from the Books of the Skinners Company : Queen Margaret of Anjou, wife of King Henry VI – the picture commemorates the Queen’s entry into the fraternity about 1475/6. Image retrieved from Wikipedia. It is suggested in the book “Middle Aged Women in the Middle Ages that the lady in waiting is possibly Katherine Vaux.

Nicholas Vaux and his sister Joan were brought up in the Lancastrian household of Lady Margaret Beaufort, mother of King Henry VII.

It seems likely that Nicholas Vaux fought under Margaret Beaufort’s husband, Thomas Stanley, 1st Earl of Derby, at the Battle of Bosworth Field in 1485. This of course was the decisive battle which put the Lancastrian Henry Tudor on the throne as King Henry VII. The defeated King Richard III, who Shakespeare has crying ‘a horse, a horse, my kingdom for a horse’, was killed. (In 2012 his skeleton, identified by DNA, was unearthed beneath a carpark in Leicester.)

Battle of Bosworth Field by Philip James de Loutherbourg retrieved from Wikipedia

Nicholas Vaux prospered under the new king. His family property was restored to him, he was frequently at court, and he held a number of official positions, one of them the important command of Guisnes in 1502. Guisnes, an English possession, was a castle six miles south of Calais.

Guisnes castle pictured in a 1545 painting of The Field of the Cloth of Gold (see below)

Nicholas Vaux is said to have spent the summer months in Guisnes and the autumn and winter in England.

Nicholas’s sister Joan became governess to Henry VII’s daughters. Joan’s first marriage in 1489 was attended by the King and Queen.

When Henry VIII ascended the throne in 1509, Nicholas Vaux continued to be active at court. In 1511 he entertained the king at the Vaux estates in Harrowden. Among other roles Vaux was a royal ambassador to France in 1514 and 1518.

The Field of the Cloth of Gold

In 1520 Nicholas Vaux served as one of three commissioners responsible for a formal meeting between King Henry VIII of England and King Francis I of France, staged as a tournament. The summit, which ran for 18 days between 7 June and 24 June was arranged to strengthen the bond of friendship between the two kings.

The tournament was a magnificent royal spectacle which from the richly embroidered fabrics of the tents and costumes became known as the Field of the Cloth of Gold.

The Field of the Cloth of Gold, oil painting of circa 1545 in the Royal Collection at Hampton Court. Henry VIII on horseback approaches at bottom left. Retrieved from Wikipedia. Guisnes Castle is to the left of the temporary palace which has a wine fountain in its forecourt.

In just over two months, a huge English workforce erected several thousand tents, built a tiltyard (or tournament arena) for jousting and armed combats, and constructed a vast temporary palace of 10,000 square metres to accommodate the English King.

The feasting and entertainments were extraordinarily lavish.  “Each king tried to outshine the other, with dazzling tents and clothes, huge feasts, music, jousting and games.” 12,000 people attended. The English accounts English food and drink accounts showed provisions of nearly 200,000 litres of wine (wine was flowing from two fountains) and 66,000 litres of beer; the English food supplies included 98,000 eggs, more that 2,000 sheep, 13 swans, and 3 porpoises.

Both kings took part in the tournaments. “While the carefully established rules of the tournament stated that the two kings would not compete against each other, Henry surprisingly challenged Francis in a wrestling match, but it turned sour for Henry when he quickly lost.”

Vaux’s marriages

Vaux married twice.

His first wife, Elizabeth Fitzhugh (died 1507) was the widow of Sir William Parr (died 1483; her granddaughter Catherine Parr through her first marriage became the sixth wife of Henry VIII).  Elizabeth was the niece of Richard Neville, 16th Earl of Warwick (known to history as Warwick the Kingmaker). The Lancastrian Vaux’s first marriage was thus to a Yorkist.

His second wife, Anne Greene, was the sister of Maud Parr nee Green, who was the wife of Thomas Parr who was the son of Nicholas’s first wife. Maud was the mother of Catherine Parr. Anne Greene was the sister of Nicholas Vaux’s first wife’s daughter-in-law Maud.

Abbreviated family tree showing the two wives of Nicholas Vaux (c 1460 – 1523).
Vaux’s first wife was grandmother and his second wife was aunt to Catherine Parr who married King Henry VIII in 1543.

In May 1522 England was at war with France and Vaux was at Guisnes ensuring its defence. In September 1822 he was reported to be “very sore”: either sick or wounded. He returned to England and died on 14 May 1523 at the hospital of St. John, Clerkenwell, London.

Nicholas Vaux had three surviving daughters by his first marriage and two surviving sons and three surviving daughters by his second marriage. His oldest son Thomas inherited the title and was also at court.

Nicholas Vaux is a minor character in Shakespeare’s Henry VIII. He has four lines directing a barge to be prepared to ferry Buckingham to his execution. It has been observed that Vaux showed ‘his humanity and respect for the Duke by ordering that the barge to convey him to his death be properly decorated to reflect the Duke’s status’.


Small matches in AncestryDNA

AncestryDNA announces changes to its matching policy

From time to time users of the AncestryDNA service are confronted by a message advising that:

Our backend services are overtaxed at the moment and we are unable to retrieve all your matches. We apologize for the inconvenience, please try again later.

At other times users are told, “Something went wrong. Try reloading the page in your browser, or come back later.”

Refreshing the page often fails to work and users are forced to accept the invitation to ‘come back later’. Sometimes even the less specialised Ancestry.com site becomes overwhelmed.

AncestryDNA has more than 18 million samples in its database. It uses enormous computer power to store data and compare DNA. This is costly, of course, and where its methods produce false positives, inefficent.

Recently the company announced that it will no longer provide details of matches with only one segment where that segment is smaller than 8 centimorgans. The company gives as the reason for this new policy that

the shorter the length of the detected IBD segment (expressed in genetic distance), the less likely it is that the detected chromosome segment is truly inherited from a common ancestor.

AncestryDNA Matching White Paper Last updated July 15, 2020 – Discovering genetic matches across a massive, expanding genetic database

AncestryDNA notes that:

  • it has “…changed the [minimum] amount of DNA you need to share to be considered a match with another individual to 8 cM”.
  • from late August “…you’ll no longer see matches or be matched to people who share 7.9 cM or less DNA with you unless you’ve messaged them and/or included them in a note, or added them to a group (including your starred group).”
  • the change has been delayed “…until late August so you have time to review and determine if you want to save any very distant matches by sending them a message and/or including them in a note or group”.

Definitions, and what the AncestryDNA announcement means

A centimorgan (cM) is “a map unit used to express the distance between two gene loci on a chromosome. A spacing of one cM indicates a one percent chance that two genes will be separated by crossing over.” 

The more centimorgans person A shares with person B the closer they are likely to be related. Your chromosomes have a total length of about 7400 cM, so you share about 3700 cM with each of your parents. Two people who share 6 to 7.9 cM are likely to be about 6th cousins, that is, they possibly share 5th great grandparents.

If you are related to a DNA match then the DNA segment or segments you share with at least one other person are identical by descent (IBD); you and your match inherited the segment from a common ancestor without recombination, and the segment has the same ancestral origin for you and your match.

The blogger Roberta Estes has estimated that 18% of her total matches share 7 cM and 30% share 6 cM. AncestryDNA’s purge of matches smaller than 8 cM will reduce her number of DNA matches by nearly half.

It has been estimated that about half the matches in the 6 to 7 centimorgan range are false positives. These matches do not truly demonstrate inheritance from a common ancestor. An error might have occurred when the DNA testing company compiled the chromosome marker: the DNA variations or the series of single nucleotide polymorphisms (SNPs) .

The companies’ matching algorithms do not treat the paternal and maternal chromosomes separately. Consequently consecutive SNP results for a short segment of DNA may appear to be half-identical in two individuals when in actuality the DNA sequences are not identical because the SNPs match on opposing chromosomes or because of errors in the matching algorithms. False matches can be the result of pseudosegments (matching alleles zig-zagging backwards and forwards between the maternal side and the paternal side), compound segments and fuzzy boundaries.

International Society of Genetic Genealogy Wiki: Identical by descent – false positive matches https://isogg.org/wiki/Identical_by_descent#False_positive_matches

DNA is inherited so a match must also match one of our parents

If a person appears to match me but does not also match either of my parents, something has gone wrong in the matching process, for if neither of my parents shared the segment that appears to justify our match that person and I did not inherit the segment from a common ancestor.

The blogger Debbie Kennett found that 54% of her matches in the 6 to 7 cM range were not shared by either of her parents.


If about half of all DNA matches in the AncestryDNA database are very small and about half these are false positives, then about a quarter of the matches in our list of matches are false positives and are not genealogically relevant.

My experience

On 15 August 2020 I had 25,434 DNA matches to individuals. With 125 of these people I share 20 Cm or more. There are 25,309 distant matches with whom I share between 6 and 20 cM. Unfortunately there is no way using AncestryDNA to count matches in the range of 6 to 8 cM.

As both my parents have had their DNA analysed I am able to look at my very small matches to assess whether they match either of my parents.

Recently I looked at my small matches where AncestryDNA used its ‘Thrulines’ algorithm to show we both share common ancestors on our family tree and share DNA.

Fan chart showing the genetic ancestors identified by AncestryDNA using ThruLines for small matches 6 – 7 centimorgans (August 2020; Fan chart generated by DNA Painter)

I have 9 matches with shared common ancestors and shared DNA of 6 to 7cM. Of these matches 8 also share DNA with my father. The 9th match has a strong genealogical connection on my Mainwaring line and I do not doubt we are 5th cousins. However, he does not show up among my father’s DNA matches so despite being cousins we do not share DNA. It is estimated that only one third of fifth cousins share DNA.

It may be that the match with my father was somehow modified by AncestryDNA’s proprietary Timber algorithm, which tries to eliminate false matches “because they are of the same ethnicity or population — meaning that they (and many others from that same population) share DNA that they inherited from a distant ancestor who lived much longer ago”.

The Timber algorithm removes matches where the segments show “identical DNA with thousands of other people at that particular place”.

Recording notes about matches in the AncestryDNA database

AncestryDNA allows users to make personal notes in their database for each of their matches. Users can record when they messaged a match, how they believe they might be related, and the details of their shared match.

part of the list of AncestryDNA matches. Those in the list where AncestryDNA’s Thrulines algorithm have identified a common ancestor are shown with a green leaf in the 3rd column – see orange arrows. Part of the notes field appears in the 4th column see green arrows.
One of my DNA matches showing my notes about the match

I looked at the 38 matches in the range of 6 to 7 cM shared DNA where I had made notes.

Of these 38 matches only one was shared with my mother, who shares 9 cM with that match.  I don’t know how we connect.

Of 19 matches for which I had made notes and messaged, the matches also recorded shared DNA with my father. Three show common ancestors. Sixteen do not show common ancestors at present, although for several I know definitely how we are related.

Eighteen matches that I had annotated do not show as sharing DNA with either of my parents. It is thus likely that these matches and I do not share a common ancestor who can be genealogically traced.

Two of these matches had previously shown up as common ancestors, a green leaf in the list and the connection between our trees identified but no longer show up with the connection between our trees. Moreover they do not share DNA with my father.

For 2 of the 18 matches my father does not show as sharing DNA but does share DNA with another relative administered by the same manager. To me this indicates a possibility that the match is genuine but AncestryDNA’s Timber algorithm has modified my father’s match so it does not show up.


I am not concerned if AncestryDNA removes smaller matches from my match list. Based on my very small review I accept that around half of the matches do not share DNA with my parents and thus are not useful matches for genealogy.

Of the remaining matches I already try to make connections with cousins who are researching the same ancestors using Ancestry.com’s member connect facility, which helps users to find fellow users researching the same ancestor. So while the ‘Thrulines’ method of highlighting shared DNA and common ancestors on a tree is useful, it is not the only means to make connections with cousins.

The Member Connect option is highlighted by the orange arrow
When you click through to Member Connect you can see other people who are researching the same ancestor, the facts they have used and the Ancestry.com sources they have saved to their tree. Sometimes Ancestry.com does not correctly identify the common ancestor and you can ignore their suggestion.

Other matching services

Databases such as MyHeritage, FTDNA, and GEDMatch have tools that AncestryDNA does not provide. The tools are based on a chromosome browser, which helps to reveal details about the matched segment, enabling users to compare the shared segment with other matches. Without this it is impossible to be confident that the inherited segment is indeed from a distant ancestor. (See my post on Triangulating Matilda’s DNA.)

These other matching services have databases considerably smaller than that of AncestryDNA. Notwithstanding the better tools they have and the ability to see details of shared segments, I think it is best to test at AncestryDNA in the first instance because of the larger pool of matches.

Estimate of the size of the major autosomal databases in January 2020 caculated by Leah Larkin and published at https://thednageek.com/autosomal-dna-database-growth/ In January 2020 AncestryDNA announced it had past the 16 million mark; in July 2020 AncestryDNA announced it had passed 18 million tests. When we first tested in July 2016 the AncestryDNA database was less than one sixth the size.


The findings that a significant proportion of DNA matches are not genealogically significant seems plausible . For those small matches that are in fact genealogically sound I am prepared to miss out on these and concentrate my research efforts on the many thousands of larger DNA matches where I can be confident that there is definitely shared DNA and a genealogical connection if I could work it out – there are plenty of puzzles yet to be solved.

I will be pleased if AncestryDNA’s decision to remove small matches relieves pressure on its computing resources and improves response time for its users.

How will these proposed changes affect subscribers? I hope that AncestryDNA will provide more information about shared matches and new tools for exploring DNA data. And I wouldn’t mind at all if I never saw the “backend services are overtaxed” message ever again.


Related posts

Update to AncestryDNA communities: Vinnie has views

In 2016 my husband Greg and I, hoping to learn more about our family history, had our DNA analysed by AncestryDNA.

All living things are related; you and I are related to bananas, earthworms, and the fish, your cousin, whom you ate for dinner.

Our cat Vinnie at the computer: we are distantly related – a 2007 study found that about 90 per cent of the genes in the domestic cat are similar to humans

We share more and longer segments of DNA with our closer cousins, a fact that can be turned to use in family history research: find someone with whom you share a significantly long string of DNA and that person is your genealogical relative – you can probably work out how you are related.

Cousinship in the great tree of life means a common ancestor: whales and cows are related in this way. The DNA we share, or to be precise, the fact that we share it, provides clues about our relative places in the tree. To focus in a little, our relative places in the tree of our direct forebears and cousins are indicated by the segments of DNA we share. The more DNA I share with someone the more recent our common ancestry.

Last year I wrote about AncestryDNA’s ‘ethnicity estimates’ and ‘genetic communities’. AncestryDNA has two ways of looking at your genetic background: the ethnicity estimate which compares your DNA to a reference group and genetic communities where you are linked with cousins who share DNA from a similar geographic area.

AncestryDNA’s ethnicity estimate is intended to be a measure of a person’s ethnic makeup. Are you partly Inuit? Were your ancestors Tasmanian Aboriginals or Scottish Highlanders? AncestryDNA calculates the estimate using DNA data about people who, it is said “…have long-standing, documented roots in a specific area”. This group of people identified by the company provide a reference group for ethnicity estimates.

Genetic communities, compiled on the basis of shared DNA, are defined as “groups of AncestryDNA members who are most likely connected because they share fairly recent ancestors who came from the same region or culture.”

It is said that a large proportion of people who pay to become members of Ancestry do so in order to discover their ethnic makeup, and presumably many of them are satisfied with what they are told. Ethnicity is a tricky concept, however, and Ancestry’s pitch about ‘long-standing’ (how long?), ‘documented’ (by whom? how?) roots in a specific area (how is the area specified?) sharing ‘fairly recent’ (how recent?) ancestors (which?) in a ‘region’ (of what extent?) or culture (what’s that, for Heaven’s sake?), is a pitch that will strike many people as promoting something largely meaningless. [AncestryDNA explains some of this in their 2019 Whitepaper on ethnicity estimates but you can see for example that they are estimating Aboriginal and Torres Strait Islander ethnicity on the basis of 14 DNA samples only.]

AncestryDNA ethnicity estimates were last updated in August 2019. I wrote about this in an October 2019 post: ‘ethnicity’ DNA: beware of inheritance from daughter to mother.

In late July 2020 AncestryDNA updated its genetic communities calculations, including those for communities associated with European and British settlers in Australia. I have looked again at my family’s place in the ethnicity estimates and genetic communities provided by AncestryDNA.
The updated AncestryDNA genetic communities of my husband Greg and of my father became more specific: no longer vaguely “Southern Australia British Settlers” my father is now part of the group “South Australian European and British  Settlers” genetic community and Greg is linked to the “Victoria, Australia, European and British Settlers” genetic community. Our ethnicity estimates have not been updated.

My father’s AncestryDNA ethnicity estimate showing the link to the South Australian European and British Settlers genetic community
Greg’s AncestryDNA ethnicity estimate showing the link to the Victoria, Australia, European and British Settlers genetic community

As I type these notes my cat Vinnie is sitting on my desk amusing himself by pressssssssssssssssssing randommmmmmmmm keys. I moved his paws, but now he’s taken to making sarcastic comments, and it’s hard to concentrate.

ME: “Most of Greg’s forebears came to the Colony of Victoria at the time of the gold-rushes and the assignment of this genetic community makes sense. AncestryDNA provides the information that just over 127,000 AncestryDNA members are part of this genetic community.”

VINNIE: “I’d say that the vast majority of his forebears didn’t come to Victoria at all. Most of them saw out their days on the African savannah. I’d call this a genetic community of approximately 50 million. What AncestryDNA ‘provides’ is just gas.”

Three close cousins have also been assigned to this community – we know how we are related to these cousins.
A timeline with a potted history links forebears – for the most part the linking is accurate, these forebears are all associated with Victoria.

ME: “A year ago I found my mother was assigned to the South Australian British settler community. The only person who was a member of that community with whom she shared DNA was me. My mother came to Australia as a child and all her forebears for several generations were from Germany. As far as we know no relatives came to Australia before World War 2.”

VINNIE: “In the logic trade that’s called a reductio ad absurdum. AncestryDNA’s methods make the daughter the mother of the mother.”

ME: “This was an anomalous result”.

VINNIE: “Did you get your subscription back?”

My mother’s DNA results summary report from AncestryDNA in October 2019

ME: “In response to this assignment of genetic communities and while waiting for the update, I removed my results from AncestryDNA by updating my settings and choosing not to see my matches and by not being listed as a match. My strategy seems to have worked. In the latest update my mother is no longer assigned to any Australian genetic community.”

VINNIE: “If I remove myself from the veterinarian’s appointment list I will no longer be assigned to it as a cat and you won’t have to take me for my annual checkup. Great.”

My mother still has very few DNA matches on AncestryDNA; the only match where I know how we are related is to me and I am also the only match sharing more than 50 centimorgans – that is all other of my mother’s DNA matches are likely to be no closer than 3rd cousins.
my mother’s ethnicity estimate as at August 2020

ME: “Ethnicity estimates including the assignment by AncestryDNA to genetic communities need to be treated like any other hint with caution but as a clue to one’s origins”

VINNIE: “It was thought that the One Eyed One Horned Flying Purple People Eater had to be treated with caution too, but he turned out to be harmless. There weren’t any purple people for him to eat. You needn’t be cautious about nonsense.


Related posts

Updating my Ahnentafel index

When I started this blog eight years ago, one of its pages was a pedigree spreadsheet with Ahnentafel numbering. Today I updated the published index on this website.

An Ahnentafel (German ‘ancestor board’) table assigns a unique number to each person.

On your own Ahnentafel chart you are number 1. In the previous generation your father is 2 and your mother is 3. Your father’s number is calculated by doubling yours; your mother’s number is one plus double yours.

This scheme continues up the generations. Your paternal grandparents are 4 and 5. Your maternal grandparents are 6 and 7. Men have even numbers; women odd.

My table starts with my children as number 1 and incorporates both my husband Greg’s forebears and mine.

I use Ahnentafel numbering to keep track of our Most Recent Common Ancestors (MRCA), ancestors we share with our DNA matches, provided, of course, that I have been able to establish what the genealogical relationship is.

The update of my Ahnentafel index made me think about our progress on the tree. The last time I reviewed our tree progress was March 2020. At 31 March 2020 my tree showed 344 of the possible 1023 forebears up to 10 generations of 7th great grandparents. I know all 32 of my children’s 3rd great grandparents and thus all 62 of their possible ancestors to that level. At the 4th great grandparent level I know 53 of their 64 possible 4th great grandparents.

Direct ancestors whose names I know are coloured; blanks represent those whose names are unknown to me. Chart generated by DNAPainter.

In the four months since March I haven’t made any progress in identifying more ancestors in these 10 generations, but I have made a little progress in the generations beyond, with two more 8th great grandparents, four 9th great grandparents, two 10th great grandparents, and two 11th great grandparents. Adam and Eve are coming up.

GenerationAncestors identifiedTree completeness at this level
Parents2 of 2100%
Grandparents4 of 4100%
Great-Grandparents8 of 8100%
2nd-Great-Grandparents16 of 16100%
3rd-Great-Grandparents32 of 32100%
4th-Great-Grandparents53 of 6483%
5th-Great-Grandparents72 of 12856%
6th-Great-Grandparents76 of 25630%
7th-Great-Grandparents80 of 51216%
8th-Great-Grandparents66 of 10246.45%
9th-Great-Grandparents43 of 20482.10%
10th-Great-Grandparents31 of 40960.76%
11th-Great-Grandparents21 of 81920.26%
12th-Great-Grandparents12 of 163840.07%
Tree completeness calculated by DNAPainter.
There is limited pedigree collapse: 10 people appear twice as our children’s 3rd great grandparents John Way and Sarah Daw were cousins who married.

Our family tree, including indirect relatives, has grown from 10,481 people in March 2020 to 10,928 as at August 2020. It now has 17,204 records (previously 16,099), 2,238 images (previously 2,109), and 305 stories (previously 289). I have added 65 posts.

These statistics give me a quick measure of the progress I’ve made. There still a long way to go…

Related posts